Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif
نویسندگان
چکیده
DNA origami is an emerging technology that assembles hundreds of staple strands and one single-strand DNA into certain nanopattern. It has been widely used in various fields including detection of biological molecules such as DNA, RNA and proteins. MicroRNAs (miRNAs) play important roles in post-transcriptional gene repression as well as many other biological processes such as cell growth and differentiation. Alterations of miRNAs' expression contribute to many human diseases. However, it is still a challenge to quantitatively detect miRNAs by origami technology. In this study, we developed a novel approach based on streptavidin and quantum dots binding complex (STV-QDs) labeled single strand displacement reaction on DNA origami to quantitatively detect the concentration of miRNAs. We illustrated a linear relationship between the concentration of an exemplary miRNA as miRNA-133 and the STV-QDs hybridization efficiency; the results demonstrated that it is an accurate nano-scale miRNA quantifier motif. In addition, both symmetrical rectangular motif and asymmetrical China-map motif were tested. With significant linearity in both motifs, our experiments suggested that DNA Origami motif with arbitrary shape can be utilized in this method. Since this DNA origami-based method we developed owns the unique advantages of simple, time-and-material-saving, potentially multi-targets testing in one motif and relatively accurate for certain impurity samples as counted directly by atomic force microscopy rather than fluorescence signal detection, it may be widely used in quantification of miRNAs.
منابع مشابه
Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates.
A central challenge in nanotechnology is the parallel fabrication of complex geometries for nanodevices. Here we report a general method for arranging single-walled carbon nanotubes in two dimensions using DNA origami-a technique in which a long single strand of DNA is folded into a predetermined shape. We synthesize rectangular origami templates ( approximately 75 nm x 95 nm) that display two ...
متن کاملUnderstanding the mechanical properties of DNA origami tiles and controlling the kinetics of their folding and unfolding reconfiguration.
DNA origami represents a class of highly programmable macromolecules that can go through conformational changes in response to external signals. Here we show that a two-dimensional origami rectangle can be effectively folded into a short, cylindrical tube by connecting the two opposite edges through the hybridization of linker strands and that this process can be efficiently reversed via toehol...
متن کاملThe Effect of Basepair Mismatch on DNA Strand Displacement.
DNA strand displacement is a key reaction in DNA homologous recombination and DNA mismatch repair and is also heavily utilized in DNA-based computation and locomotion. Despite its ubiquity in science and engineering, sequence-dependent effects of displacement kinetics have not been extensively characterized. Here, we measured toehold-mediated strand displacement kinetics using single-molecule f...
متن کاملReconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod.
Distinct electromagnetic properties can emerge from the three-dimensional (3D) configuration of a plasmonic nanostructure. Furthermore, the reconfiguration of a dynamic plasmonic nanostructure, driven by physical or chemical stimuli, may generate a tailored plasmonic response. In this work, we constructed a 3D reconfigurable plasmonic nanostructure with controllable, reversible conformational t...
متن کاملA G-quadruplex based platform for label-free monitoring of DNA reaction kinetics.
Research on the kinetic characteristics and mechanisms of DNA reactions is crucial for bioengineering and biosensing. A G-quadruplex, which can form a peroxidase-mimicking DNAzyme with hemin, was for the first time used to establish a versatile platform for kinetic investigations on DNA reactions. G-quadruplex sequence EAD2 was incorporated into the corresponding nucleic acid reaction as produc...
متن کامل